A Class of Mathematical Programs with Equilibrium Constraints: A Smooth Algorithm and Applications to Contact Problems
نویسنده
چکیده
We discuss a special mathematical programming problem with equilibrium constraints (MPEC), that arises in material and shape optimization problems involving the contact of a rod or a plate with a rigid obstacle. This MPEC can be reduced to a nonlinear programming problem with independent variables and some dependent variables implicity defined by the solution of a mixed linear complementarity problem (MLCP). A projectedgradient algorithm including a complementarity method is proposed to solve this optimization problem. Several numerical examples are reported to illustrate the efficiency of this methodology in practice.
منابع مشابه
Duality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملOn the convergence of stationary sequences in topology optimization
We consider structural topology optimization problems including unilateral constraints arising from non-penetration conditions in contact mechanics. The resulting non-convex non-smooth problems are instances of mathematical programs with equilibrium constraints (MPEC), or bi-level programs. Applying nested (implicit programming) algorithms to this class of problems is problematic owing to the s...
متن کاملA New Iterative Algorithm for Multivalued Nonexpansive Mappping and Equlibruim Problems with Applications
In this paper, we introduce two iterative schemes by a modified Krasnoselskii-Mann algorithm for finding a common element of the set of solutions of equilibrium problems and the set of fixed points of multivalued nonexpansive mappings in Hilbert space. We prove that the sequence generated by the proposed method converges strongly to a common element of the set of solutions of equilibruim proble...
متن کاملMATHEMATICAL PROGRAMS WITH EQUILIBRIUM CONSTRAINTS AND APPLICATIONS TO CONTROL Mihai
We discuss recent advances in mathematical programs with equilibrium constraints (MPECs). We describe the challenges posed by these problems and the current algorithmic solutions. We emphasize in particular the use of the elastic mode approach. We also present initial investigations in applications of MPECs to control problems.
متن کاملEstimation of Concentrations in Chemical Systems at Equilibrium Using Geometric Programming
Geometric programming is a mathematical technique, which has been developed for nonlinear optimization problems. This technique is based on the dual program with linear constraints. Determination of species concentrations in chemical equilibrium conditions is one of its applications in chemistry and chemical engineering fields. In this paper, the principles of geometric programming and its comp...
متن کامل